"新能源储能电池用浮动混合连接器组件关键

技术研发与产业化"成果登记公示信息

成果名称:	新能源储能电池用浮动混合连接器组件关键技术研发与产业化
完成单位:	广东鸿儒技术有限公司
完成人员:	朱锋,郑晓龙,邓成栋,王明灯,陈明林,梁鸿毅,唐旺,陈文亮
研究起止日期:	2021-11-01 至 2024-12-31
成果应用行业:	制造业
高新技术领域:	电子信息
评价单位:	广东省电子信息行业协会
评价日期:	2025-05-29
成果简介:	课题来源与背景:本项目"新能源储能电池用浮动混合连接器组件关键技术
	研发与产业化",由广东鸿儒技术有限公司主导并独立完成。本项目实施周期为
	2021年11月至2024年12月,旨在通过技术创新,研制出"高可靠、快部署、
	长寿命"特性,解决新能源储能设备在复杂工况下的应用需求,实现国产化替代。
	技术的创造性与先进性:本成果针对光伏电站、中小微电网及工商业储
	能场景中电池连接器面临的可靠性不足、维护成本高及国际标准适配性差等核心
	问题,提出三大技术突破:通过多向浮动补偿技术,创新设计的限位件与U型槽
	结构实现连接器在长度和宽度方向上的自适应调整,振动环境下接触电阻变化率
	<3%,解决储能系统因振动、热胀冷缩导致的对接偏移问题;通过壳体防呆件、
	对接导向槽和插接盲槽的三级防呆设计,实现快速可靠插接,消除工商业储能场
	景下人工操作的误插风险,适配模块化电池组快速扩展需求使误插率降至 0.1%以
	下,安装效率提升 50%;建立全场景可靠性验证体系,构建覆盖高盐雾(C5-M 级)、
	热带高湿等多极端环境的加速老化测试平台,模拟 10 年服役工况。
	成果的关键性能指标达到行业先进水平: 防护等级达到 IP68, 适配沿海、
	高海拔等高盐雾/高湿度场景中, 使产品应用的储能设备年故障率降低 90%; ±
	2mm 三轴浮动补偿、自对中盲插结构(容差±1.5mm),有效降低施工精度要求,
	现场安装效率提高 50%,同时解决中小微电系统(如社区储能站)因非专业安装
	导致的连接器对位难题;从(-40°℃)高寒地区到(105°℃)热带海岛(盐雾+湿热)
	均可稳定运行; 插拔次数超 10000 次, 全生命周期无需更换连接器。