"基于 IBM POWER 芯片架构平台巨型服务器

用电路板的研发与国产化"成果登记公示信息

成果名称:	基于 IBM POWER 芯片架构平台巨型服务器用电路板的研发与国产化
完成单位:	生益电子股份有限公司
完成人员:	张志远,唐海波,孙改霞,张恭敬,陈正清,邓梓健,肖璐,焦其正,赵刚俊,刘梦
	茹,王小平,谭振华,宋祥群,曹大福,余锦玉,张勇,任尧儒,李逸林,文贵宜,徐
	胜,桂来来,陶雪荣
研究起止日期:	2021-01-01 至 2023-12-31
成果应用行业:	制造业
高新技术领域:	电子信息
评价单位:	东莞市高新技术产业协会
评价日期:	2025-09-02
成果简介:	为响应国家新基建的号召,更为了国家安全和商业信息安全,我国的国防、
	政府、银行、商业等各行各业的企业级巨型服务器将越来越多地采用国产服务器
	进行替代,因此,服务器相关产业在我国是朝阳产业,市场前景广阔。IBM POWER
	芯片架构的平台的服务器具备优异的性能、超高的可靠性,以前主要用于政府、
	银行、石油、国防等行业的关键应用,但该类服务器目前仅美国IBM 能制造。为
	消除数据信息安全隐患,防止被卡脖子断供,IBM POWER 芯片架构平台服务器国一产化势在必行。
	另一方面,作为服务器核心元器件之一的印制电路板(PCB),早期集中在
	一些欧美、日资和台资企业生产,作为高可靠性的高性能关键应用高端设备,其
	对制造技术的水平要求非常,同时,国外对我国的技术封锁一直比较严密,为打
	破国外的技术封锁,作为行业领先企业的我司,对此投入资源进行了研究,目前
	已突破大量关键技术,并在部分技术和产品上获得了原创厂家 IBM 的系统技术认
	证,已开始量产交付,获得了初步的经济收益。本研究所研发的大量关键技术,
	不仅用于本研究的电路板产品,也同样可用于 5G 通信网络硬件建设,如核心路
	由器、高速传输网、5G基站承载网以及为通信网络配套的数据存储设备等,作为
	华为、中兴等国产通信客户的高端主力电路板供应商,我司也将部分技术用于 5G 通信用电路的制造上,如光学渐进式对位技术、低电流 DC 复合电镀技术等,获
	一理信用电路的制造上,如无字湖进式对位技术、低电流 DC 复合电镀技术等,获一得了良好的社会效益。
	本研究为了减少信号传输的损耗,保证较高的高频、高速信号完整性(低损
	耗高效传输),使用了大量的低介电常数、低介质损耗的高频高速材料。但目前
	市场上提供高速材料的板材供应商大部分为国外厂商(如美国的 Roger、日本的
	Panasonic 、韩国的 Taconic 等) ,国内板材供应商仅能供应少数中低端材料,在
	高端材料领域的占有率及研发水平与国外相比还存在较大差距。原材料的供应稳
	定性受国际形势影响较大,在本研究的开展中,已邀请部分国内厂商尝试参与,
	也取得了一些成果,后续需继续推动国内原材料厂家在高端材料领域的研发进度,
	促成产业链上下游全线国产化,将核心技术全部掌握在国内,进而大幅提升中国
	PCB 产业在国际中的技术地位,引领技术发展的方向。